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Directional g-Derivative

Zafer Sanh

Abstract— In this paper partial g-derivative of a two
variable function f and directional g-derivative of function f at
the point P = (p4,p2) in the direction of a unit vector are
introduced and some properties of g- directional derivative are
investigated.

Index Terms—~Partial g-derivative, directional g- derivative.

I. INTRODUCTION

A quantum calculus is a version of calculus in which we do
not take limits. Derivatives are differences and anti
derivatives are sums. It is a theory, where smoothness is no
more required[1].

The general idea in this paper is to generalize the concept
d-derivative of a real function f to a two variable function and
to construct g- directional derivative of a function.

Il. PRELIMINARIES

Consider an arbitrary function f(x). The g-derivative D, f
of the function f(x) is given by
flgx) = f(x)
D)) ==~ @
if x = 0and (D,f)(0) = f'(0) provided f(0) exists. Note
that

d
lim D f (x) = £ (x)
if f(x) differentiable[2]. The Leibniz notation %f(x), a
ratio of two "infinitesimals"” is rather confusing, since the
notion of the differential df(x) requires an elaborate

explanation. In contrast, the notion of g-differential is
obvious and plain ratio[3].

It is clear that as with ordinary derivative, the action of
taking the g-derivative of a function is a linear operator. In
other words, for any constants a and b, we have

Dyfaf (x) + bg(x)} = aD,f (x)+bDgg(x)

The formulas for the g-derivative of a product and a
quotient of functions are [3]

Da{f(x)g(x)} = Dof (x)g(x)+f(qx)Dyg(x)

and
f&)
Pa {g(x)}
If f is g-differentiable at x, then
fax) = f(x) + (q — D)xDgf (x).

_ 90D, f(x) = f(x)Dg g(x)
9(qx)g(x) '

The g-analogue of the chain rule is more complicated since
it involves g-derivatives for different values of q depending

Zafer Sanli, Department of Mathematics,
University, Burdur, Turkey, +90 248 213 3061

Mehmet Akif Ersoy

17

on the composed functions. The chain rule for general
functions f(x) and g(x) is[3]
Dy(f e g)(x) = D%f (9(x))Dg g ().
gx

In this section we will define to partial g-derivative of a
two variable functions by using the definition one variable
case and give a version of a chain rule for two variable
functions.

For i=1,2, I; is a nonempty closed subset of the real
numbers R. Let us set

IP=1 xL ={t=(t,t):t; €L,,i = 1,2}.

PARTIAL Q-DERIVATIVE

Definition 3.1. Let f: 12 - R be atwo variable function. The
partial g-derivative of f with respect to t; and t, is defined
by

af () _ flquty, ty) — f(t, t2)

aqltl qiti —

and
f (&) _ f(t1,q2t2) — f(ty, t2)

g, t, 2t — t;

respectively.
Note that
af () _of(®)
oo

i=12
q;~1 aqltl

if f(¢t) differentiable.
Lemma 3.2 Let f,g:1> > R are two variable functions.
Then, fora,b € R, i=1,2,

a + — 6f(t) ag(t)
aqiti{ f(t) T bg(t)} =a qiti + b qiti
and 3}
0 g ag(t) af(t)
a‘htl {f(t) (t)} f(qltl' tZ) m * g(t) alhtl '
9 g dg a
a‘h = V09(0) = (b aate) K(;) 9 a];z(ttz)

Proof: By the Definition 3.1. we get easily linearity. And the
partial g-derivative of product fand g is

A(fg)(ts,t) _ (fg)(aiti, t2) — (fg(t, t)

0g,t1 qity — ty
_ flait, t2)g(qity, t) — f (1, t,)g(ts, t,)
qity —
_ flait, t)g(qit, t) — f(t1, ) g(th, t) £ f(qaty, t2) g(ty, ty)
qity — 6

_ @1ty t2)g(qity, ty) — f(qity, t2)g (¢, t5)
qity =t
n fqit, 2)g9(t, t) — f(t, t)g(t, tr)
qit; — 6
= Flautity) {g(qty, ti) :f(tyfz)}
Flatut) — Flnt)
+ 2 P2 g(t,t)

qQity =t

ag(fl'fz)
= f(qity, t2) o0.t;

af (t1, 1)
alh 2] .

+9(ty,t)

www.ijeas.org



Directional g-Derivative

Lemma 3.3. Let u,(t) and u,(t) are real functions and
f:1?> > R be a two variable function. Then f (u, (t), u,(£))
is a real function of variable t and

a (t),uz(qt) a (©)uz(t)
qu(ul(t).uz(t)) - MDq%(f) + Munz (®.

aq’iul
Proof: Let g(t) = f(u,(t), u,(t)). Then the g-derivative of
g(t), we have

aq’iul

(qt) — g(®)

Dyg(t) = T
_ f(ul(qt), uz(qt)) - f(u1(t)’uz(t))

gt —t
_ f(ul(qt), uz(qt)) - f(ul(t),uz(t)) t f(ul(t),uz(qt))

gt —t

_ f(ul(qt), uz(qt)) - f(u1(t)’uz(qt))

gt —t
+ f(u1(t)'uz(qt()lz :{(%(t)'uz(t)) — R, +R,

By the chain rule, we obtain
_ f(ul (qt),u, (qt)) - f(ul ), u, (qt)) (uy(qt) — u, (t))

Ry qt—t (u1(qt) — u, (1))
f <u1 (qt) Zi—gg' U (qt)) - f(u1 ®),u, (qt)) (u,(qt) — 1, ()

_ f(q;ul(t)! U, (qt)) - f(ul ®),u, (qt)) (u(qt) — uy (2))
£ (q; - 1))u1(t) qt—t
af (uq (1), u2(qt)
= laqi—ulquul(t)

and

_0f (u (D), u,(8))

u;(qt) and g’ uz(qt)

u1(6) 27w,

Dof (s (0,1, (1)) = L8N p 1y (1) 4 SOy,
ot

Og3t

Rz unZ (t)

. Hence

where q; =

IV. DIRECTIONAL Q-DERIVATIVE

Definition 4.1. Let f: 12 - R be a two variable function. The
directional g-derivative of f function at the point P =
(p1,p2) in the direction of the unit vector ¥ = (vq,v,) is
defined as the number

A (P)_

ag7
Theorem 4.2. Let f: 12 — R be a two variable function. The
directional g-derivative of f function at the point P =
(p1, p) in the direction of the unit vector ¥ = (v,,v,) is

Dof (P + )|, _,.-

of (1, P2)
v, + v,
Oq3U2

of(P) _of (q1p1,p2)

aqv aqiul

Proof: uni(l)|ﬂ=0 =7, since ui(l) =D +A'Ui ,i=l,2.
Then by the Lemma 3.3 the theorem is proved.
Theorem 4.3. Leta,b €ER, f,g:1> > R are two variable

function, ¥ = (v;,v,) and W = (w;,w,) are unit vectors.
Then

i) of(P) _ 9f(P) , 9f(P)
dqrtw gD | 0qw
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i) 0U+g)(P) _ 9f(P) , 9g(P)
aqv aqv aqv
Proof: i) By the Definition 4.1 and Theorem 4.2, we have

af (P af (qip4, 0 ,
fP) _ f(;hpl pZ)(v1+w1)+ fa(pl P2) (4 bw)
aqv +w q U ;U2
0f (gip1, p2) of (p1,p2)
= () + (v2)
Bq;ul 1 aq; 2 2
6 iy ) a )
N f(aip: pz)(le f(p1,p2) w,)
Og; Oq3t2
_ofp)  of(P)
04V OqW
i)
a(f +9)(P) a(f + g)(qip1, p2) a(f + g9)(p1,p2)
= = 1+ 2
aqv aq;u1 aq;uz
_laipupa) - 0f(pup2)
Og;th ! Igguz
9(9)(g1p1,p2) 9(g) (P, p2)
+ 121 Uy
SHE) Og3Uz
_of(P) og(P)
B 047 047
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