Directional q-Derivative

Zafer Şanlı

Abstract

In this paper partial q-derivative of a two variable function f and directional q -derivative of function f at the point $P=\left(p_{1}, p_{2}\right)$ in the direction of a unit vector are introduced and some properties of q - directional derivative are investigated.

Index Terms-Partial q-derivative, directional q-derivative.

I. INTRODUCTION

A quantum calculus is a version of calculus in which we do not take limits. Derivatives are differences and anti derivatives are sums. It is a theory, where smoothness is no more required[1].

The general idea in this paper is to generalize the concept d-derivative of a real function f to a two variable function and to construct q - directional derivative of a function.

II. Preliminaries

Consider an arbitrary function $f(x)$. The q-derivative $D_{q} f$ of the function $f(x)$ is given by

$$
\begin{equation*}
\left(D_{q} f\right)(x)=\frac{f(q x)-f(x)}{q x-x} \tag{1}
\end{equation*}
$$

if $x \neq 0$ and $\left(D_{q} f\right)(0)=f^{\prime}(0)$ provided $f^{\prime}(0)$ exists. Note that

$$
\lim _{q \rightarrow 1} D_{q} f(x)=\frac{d}{d x} f(x)
$$

if $f(x)$ differentiable[2]. The Leibniz notation $\frac{d}{d x} f(x)$, a ratio of two "infinitesimals" is rather confusing, since the notion of the differential $d f(x)$ requires an elaborate explanation. In contrast, the notion of q-differential is obvious and plain ratio[3].

It is clear that as with ordinary derivative, the action of taking the q-derivative of a function is a linear operator. In other words, for any constants a and b, we have
$D_{q}\{a f(x)+b g(x)\}=a D_{q} f(x)+b D_{q} g(x)$
The formulas for the q-derivative of a product and a quotient of functions are [3]
$D_{q}\{f(x) g(x)\}=D_{q} f(x) g(x)+f(q x) D_{q} g(x)$
and
$D_{q}\left\{\frac{f(x)}{g(x)}\right\}=\frac{g(x) D_{q} f(x)-f(x) D_{q} g(x)}{g(q x) g(x)}$.
If f is q-differentiable at x, then
$f(q x)=f(x)+(q-1) x D_{q} f(x)$.
The q-analogue of the chain rule is more complicated since it involves q-derivatives for different values of q depending

[^0]on the composed functions. The chain rule for general functions $f(x)$ and $g(x)$ is[3]
$D_{q}(f \circ g)(x)=D_{\frac{g(q x)}{g(x)}} f(g(x)) D_{q} g(x)$.

III. Partial Q-Derivative

In this section we will define to partial q-derivative of a two variable functions by using the definition one variable case and give a version of a chain rule for two variable functions.

For $\mathrm{i}=1,2, I_{i}$ is a nonempty closed subset of the real numbers \mathbb{R}. Let us set

$$
I^{2}=I_{1} \times I_{2}=\left\{t=\left(t_{1}, t_{2}\right): t_{i} \in I_{i}, i=1,2\right\}
$$

Definition 3.1. Let $f: I^{2} \rightarrow \mathbb{R}$ be a two variable function. The partial q-derivative of f with respect to t_{1} and t_{2} is defined by

$$
\frac{\partial f(t)}{\partial_{q_{1}} t_{1}}=\frac{f\left(q_{1} t_{1}, t_{2}\right)-f\left(t_{1}, t_{2}\right)}{q_{1} t_{1}-t_{1}}
$$

and

$$
\frac{\partial f(t)}{\partial_{q_{2}} t_{2}}=\frac{f\left(t_{1}, q_{2} t_{2}\right)-f\left(t_{1}, t_{2}\right)}{q_{2} t_{2}-t_{2}}
$$

respectively.
Note that

$$
\lim _{q_{i} \rightarrow 1} \frac{\partial f(t)}{\partial_{q_{i}} t_{i}}=\frac{\partial f(t)}{\partial t_{i}}, \quad i=1,2
$$

if $f(t)$ differentiable.
Lemma 3.2 Let $f, g: I^{2} \rightarrow \mathbb{R}$ are two variable functions. Then, for $a, b \in \mathbb{R}, \mathrm{i}=1,2$,

$$
\frac{\partial}{\partial_{q_{i}} t_{i}}\{a f(t) \pm b g(t)\}=a \frac{\partial f(t)}{\partial_{q_{i}} t_{i}} \pm b \frac{\partial g(t)}{\partial_{q_{i}} t_{i}}
$$

and

$$
\begin{aligned}
& \frac{\partial}{\partial_{q_{1}} t_{1}}\{f(t) g(t)\}=f\left(q_{1} t_{1}, t_{2}\right) \frac{\partial g(t)}{\partial_{q_{1}} t_{1}}+g(t) \frac{\partial f(t)}{\partial_{q_{1}} t_{1}}, \\
& \frac{\partial}{\partial_{q_{2}} t_{2}}\{f(t) g(t)\}=f\left(t_{1}, q_{2} t_{2}\right) \frac{\partial g(t)}{\partial_{q_{2}} t_{2}}+g(t) \frac{\partial f(t)}{\partial_{q_{2}} t_{2}} .
\end{aligned}
$$

Proof: By the Definition 3.1. we get easily linearity. And the partial q-derivative of product f and g is

$$
\begin{aligned}
& \frac{\partial(f g)\left(t_{1}, t_{2}\right)}{\partial_{q_{1}} t_{1}}=\frac{(f g)\left(q_{1} t_{1}, t_{2}\right)-(f g)\left(t_{1}, t_{2}\right)}{q_{1} t_{1}-t_{1}} \\
& =\frac{f\left(q_{1} t_{1}, t_{2}\right) g\left(q_{1} t_{1}, t_{2}\right)-f\left(t_{1}, t_{2}\right) g\left(t_{1}, t_{2}\right)}{q_{1} t_{1}-t_{1}} \\
& =\frac{f\left(q_{1} t_{1}, t_{2}\right) g\left(q_{1} t_{1}, t_{2}\right)-f\left(t_{1}, t_{2}\right) g\left(t_{1}, t_{2}\right) \pm f\left(q_{1} t_{1}, t_{2}\right) g\left(t_{1}, t_{2}\right)}{q_{1} t_{1}-t_{1}} \\
& =\frac{f\left(q_{1} t_{1}, t_{2}\right) g\left(q_{1} t_{1}, t_{2}\right)-f\left(q_{1} t_{1}, t_{2}\right) g\left(t_{1}, t_{2}\right)}{q_{1} t_{1}-t_{1}} \\
& \\
& +\frac{f\left(q_{1} t_{1}, t_{2}\right) g\left(t_{1}, t_{2}\right)-f\left(t_{1}, t_{2}\right) g\left(t_{1}, t_{2}\right)}{q_{1} t_{1}-t_{1}} \\
& = \\
& \quad \\
& \quad+\frac{f\left(q_{1} t_{1}, t_{2}\right) \frac{\left\{g\left(q_{1} t_{1}, t_{2}\right)-g\left(t_{1}, t_{2}\right)\right\}}{q_{1} t_{1}-t_{1}}}{} \\
& \left.=f\left(q_{1} t_{1}, t_{2}\right)-f\left(t_{1} t_{2}, t_{2}\right)\right\} \\
& \left.q_{1} t_{1}-t_{1}\right) \frac{\partial g\left(t_{1}, t_{2}\right)}{\partial_{q_{1}} t_{1}}+g\left(t_{1}, t_{2}\right)
\end{aligned}
$$

Directional q-Derivative

Lemma 3.3. Let $u_{1}(t)$ and $u_{2}(t)$ are real functions and $f: I^{2} \rightarrow \mathbb{R}$ be a two variable function. Then $f\left(u_{1}(t), u_{2}(t)\right)$ is a real function of variable t and
$D_{q} f\left(u_{1}(t), u_{2}(t)\right)=\frac{\partial f\left(u_{1}(t), u_{2}(q t)\right)}{\partial_{q_{1}^{*}} u_{1}} D_{q} u_{1}(t)+\frac{\partial f\left(u_{1}(t), u_{2}(t)\right)}{\partial_{q_{2}^{*}}^{*} u_{1}} D_{q} u_{2}(t)$.
Proof: Let $g(t)=f\left(u_{1}(t), u_{2}(t)\right)$. Then the q-derivative of $g(t)$, we have

$$
\begin{aligned}
& D_{q} g(t)=\frac{g(q t)-g(t)}{q t-t} \\
& =\frac{f\left(u_{1}(q t), u_{2}(q t)\right)-f\left(u_{1}(t), u_{2}(t)\right)}{q t-t} \\
& =\frac{f\left(u_{1}(q t), u_{2}(q t)\right)-f\left(u_{1}(t), u_{2}(t)\right) \pm f\left(u_{1}(t), u_{2}(q t)\right)}{q t-t} \\
& =\frac{f\left(u_{1}(q t), u_{2}(q t)\right)-f\left(u_{1}(t), u_{2}(q t)\right)}{q t-t} \\
& +\frac{f\left(u_{1}(t), u_{2}(q t)\right)-f\left(u_{1}(t), u_{2}(t)\right)}{q t-t}=R_{1}+R_{2} .
\end{aligned}
$$

By the chain rule, we obtain

$$
\begin{aligned}
& R_{1}=\frac{f\left(u_{1}(q t), u_{2}(q t)\right)-f\left(u_{1}(t), u_{2}(q t)\right)}{q t-t} \frac{\left(u_{1}(q t)-u_{1}(t)\right)}{\left(u_{1}(q t)-u_{1}(t)\right)} \\
& =\frac{f\left(u_{1}(q t) \frac{u_{1}(t)}{u_{1}(t)}, u_{2}(q t)\right)-f\left(u_{1}(t), u_{2}(q t)\right)}{\left(\frac{u_{1}(q t)}{u_{1}(t)}-1\right) u_{1}(t)} \frac{\left(u_{1}(q t)-u_{1}(t)\right)}{q t-t} \\
& =\frac{f\left(q_{1}^{*} u_{1}(t), u_{2}(q t)\right)-f\left(u_{1}(t), u_{2}(q t)\right)}{\left(q_{1}^{*}-1\right) u_{1}(t)} \frac{\left(u_{1}(q t)-u_{1}(t)\right)}{q t-t} \\
& =\frac{\partial f\left(u_{1}(t), u_{2}(q t)\right)}{\partial_{q_{1}^{*}} u_{1}} D_{q} u_{1}(t)
\end{aligned}
$$

and

$$
R_{2}=\frac{\partial f\left(u_{1}(t), u_{2}(t)\right)}{\partial_{q_{2}^{*}} u_{1}} D_{q} u_{2}(t)
$$

where $q_{1}^{*}=\frac{u_{1}(q t)}{u_{1}(t)}$ and $q_{2}^{*}=\frac{u_{2}(q t)}{u_{2}(t)}$. Hence
$D_{q} f\left(u_{1}(t), u_{2}(t)\right)=\frac{\partial f\left(u_{1}(t), u_{2}(q t)\right)}{\partial_{q_{1}^{*}} u_{1}} D_{q} u_{1}(t)+\frac{\partial f\left(u_{1}(t), u_{2}(t)\right)}{\partial_{q_{2}^{*}} u_{1}} D_{q} u_{2}(t)$.

IV. Directional Q-DERIVATIVE

Definition 4.1. Let $f: I^{2} \rightarrow \mathbb{R}$ be a two variable function. The directional q-derivative of f function at the point $P=$ (p_{1}, p_{2}) in the direction of the unit vector $\vec{v}=\left(v_{1}, v_{2}\right)$ is defined as the number

$$
\frac{\partial f(P)}{\partial_{q} \vec{v}}=\left.D_{q} f(P+\lambda v)\right|_{\lambda=0} .
$$

Theorem 4.2. Let $f: I^{2} \rightarrow \mathbb{R}$ be a two variable function. The directional q-derivative of f function at the point $P=$ $\left(p_{1}, p_{2}\right)$ in the direction of the unit vector $\vec{v}=\left(v_{1}, v_{2}\right)$ is

$$
\frac{\partial f(P)}{\partial_{q} \vec{v}}=\frac{\partial f\left(q_{1}^{*} p_{1}, p_{2}\right)}{\partial_{q_{1}^{*}} u_{1}} v_{1}+\frac{\partial f\left(p_{1}, p_{2}\right)}{\partial_{q_{2}^{*}} u_{2}} v_{2}
$$

Proof: $\left.D_{q} u_{i}(\lambda)\right|_{\lambda=0}=v_{i}$, since $u_{i}(\lambda)=p_{i}+\lambda v_{i}, \mathrm{i}=1,2$. Then by the Lemma 3.3 the theorem is proved.

Theorem 4.3. Let $a, b \in \mathbb{R}, f, g: I^{2} \rightarrow \mathbb{R}$ are two variable function, $\vec{v}=\left(v_{1}, v_{2}\right)$ and $\vec{w}=\left(w_{1}, w_{2}\right)$ are unit vectors. Then
i)

$$
\frac{\partial f(P)}{\partial_{q} \vec{v} \vec{w}}=\frac{\partial f(P)}{\partial_{q} \vec{v}}+\frac{\partial f(P)}{\partial_{q} \vec{v}}
$$

ii) $\quad \frac{\partial(f+g)(P)}{\partial_{q} \vec{v}}=\frac{\partial f(P)}{\partial_{q} \vec{v}}+\frac{\partial g(P)}{\partial_{q} \vec{v}}$

Proof: i) By the Definition 4.1 and Theorem 4.2, we have

$$
\begin{aligned}
& \frac{\partial f(P)}{\partial_{q} \bar{v}+w}=\frac{\partial f\left(q_{1}^{*} p_{1}, p_{2}\right)}{\partial_{q_{1}^{*}}} u_{1}\left(v_{1}+w_{1}\right)+\frac{\partial f\left(p_{1}, p_{2}\right)}{\partial_{q_{2}^{*}} u_{2}}\left(v_{2}+w_{2}\right) \\
&=\frac{\partial f\left(q_{1}^{*} p_{1}, p_{2}\right)}{\partial_{q_{1}^{*}} u_{1}}\left(v_{1}\right)+\frac{\partial f\left(p_{1}, p_{2}\right)}{\partial_{q_{2}^{*}} u_{2}}\left(v_{2}\right) \\
&+\frac{\partial f\left(q_{1}^{*} p_{1}, p_{2}\right)}{\partial_{q_{1}^{*}} u_{1}}\left(w_{1}\right)+\frac{\partial f\left(p_{1}, p_{2}\right)}{\partial_{q_{2}^{*}} u_{2}}\left(w_{2}\right) \\
&=\frac{\partial f(P)}{\partial_{q} \vec{v}}+\frac{\partial f(P)}{\partial_{q} \vec{w}} .
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \frac{\partial(f+g)(P)}{\partial_{q} \vec{v}}=\frac{\partial(f+g)\left(q_{1}^{*} p_{1}, p_{2}\right)}{\partial_{q_{1}^{*}} u_{1}} v_{1}+\frac{\partial(f+g)\left(p_{1}, p_{2}\right)}{\partial_{q_{2}^{*}} u_{2}} v_{2} \\
&=\frac{\partial f\left(q_{1}^{*} p_{1}, p_{2}\right)}{\partial_{q_{1}^{*}} u_{1}} v_{1}+\frac{\partial f\left(p_{1}, p_{2}\right)}{\partial_{q_{2}^{*}} u_{2}} v_{2} \\
&+\frac{\partial(g)\left(q_{1}^{*} p_{1}, p_{2}\right)}{\partial_{q_{1}^{*}} u_{1}} v_{1}+\frac{\partial(g)\left(p_{1}, p_{2}\right)}{\partial_{q_{2}^{*}} u_{2}} v_{2} \\
&=\frac{\partial f(P)}{\partial_{q} \vec{v}}+\frac{\partial g(P)}{\partial_{q} \vec{v}}
\end{aligned}
$$

REFERENCES

[1] O.Knill, Quantum Multivariable Calculus, December, 2006, Harvard University,
http://www.math.harvard.edu/~knill/various/quantumcalc/c.pdf
[2] A.Aral, V.Gupta, R.P. Agarwal, Applications of q-Calculusin Operator Theory, Springer, 2010.
[3] D. Larsson, S.D. Silvestrov. "Burchnall-Chaundy Theory for q-difference Operators and q-Deformed Heisenberg Algebras", Journal of Nonlinear Mathematical Physics, Vol.10,95-106,2003.
[4] B. O'Neill, Elementary Differential Geometry, Elsevier, 2006.
[5] M. Bohner, G.S. Guseinov, "Partial Differentiation on Time Scales" Dynamic Systems and Applications 13 (2004) 351-379.

[^0]: Zafer Şanlı, Department of Mathematics, Mehmet Akif Ersoy University, Burdur, Turkey, +90 2482133061

